Factors affecting polyhydroxybutyrate accumulation in mesophyll cells of sugarcane and switchgrass
نویسندگان
چکیده
BACKGROUND Polyhydroxyalkanoates are linear biodegradable polyesters produced by bacteria as a carbon store and used to produce a range of bioplastics. Widespread polyhydroxyalkanoate production in C4 crops would decrease petroleum dependency by producing a renewable supply of biodegradable plastics along with residual biomass that could be converted into biofuels or energy. Increasing yields to commercial levels in biomass crops however remains a challenge. Previously, lower accumulation levels of the short side chain polyhydroxyalkanoate, polyhydroxybutyrate (PHB), were observed in the chloroplasts of mesophyll (M) cells compared to bundle sheath (BS) cells in transgenic maize (Zea mays), sugarcane (Saccharum sp.), and switchgrass (Panicum virgatum L.) leading to a significant decrease in the theoretical yield potential. Here we explore various factors which might affect polymer accumulation in mesophyll cells, including targeting of the PHB pathway enzymes to the mesophyll plastid and their access to substrate. RESULTS The small subunit of Rubisco from pea effectively targeted the PHB biosynthesis enzymes to both M and BS chloroplasts of sugarcane and switchgrass. PHB enzyme activity was retained following targeting to M plastids and was equivalent to that found in the BS plastids. Leaf total fatty acid content was not affected by PHB production. However, when fatty acid synthesis was chemically inhibited, polymer accumulated in M cells. CONCLUSIONS In this study, we provide evidence that access to substrate and neither poor targeting nor insufficient activity of the PHB biosynthetic enzymes may be the limiting factor for polymer production in mesophyll chloroplasts of C4 plants.
منابع مشابه
Localization of polyhydroxybutyrate in sugarcane using Fourier-transform infrared microspectroscopy and multivariate imaging
BACKGROUND Slow-degrading, fossil fuel-derived plastics can have deleterious effects on the environment, especially marine ecosystems. The production of bio-based, biodegradable plastics from or in plants can assist in supplanting those manufactured using fossil fuels. Polyhydroxybutyrate (PHB) is one such biodegradable polyester that has been evaluated as a possible candidate for relinquishing...
متن کاملThe Study on Microbial Polymers: Pullulan and PHB
Microbial cells are producers of natural polymers present in plant cells. Production of pullulan (an extracellular microbial polysaccharide) by Aureobasidium pullularia pullulans (P. pullulans) was studied under fermentation conditions, and kinetic parameters were determined. Pullulan formation obeyed a growth and non-growth associated term. PHB (polyhydroxybutyrates) an intracellular biopo...
متن کاملComparing Behavior of Chondrocyte Cells on Different Polyhydroxybutyrate Scaffold Structure for Cartilage Tissue Engineering
Introduction: As the ability to repair cartilage tissue in body is limited, finding a suitable method for cartilage regeneration has gained the attention of many scholars. For this purpose, scaffold structure and morphology, along with cell culture on it, can be a novel method to treat cartilage injuries, osteoarthritis. Methods: In this study, polyhydroxybutyrate (PHB) is selected as the scaf...
متن کاملOne-Factor-at-a-Time Optimization of Polyhydroxybutyrate Production and Growth of Alcaligenes eutrophus by Altering Culture Parameters and Incubation Time
Polyhydroxyalkanoates (PHAs) are bioplastics derived from renewable resources such as vegetable oils, corn starch, or microbes. The polyhydroxybutyrate (PHB) is a short-chain-length PHA, and the most important bioplastic produced by certain microorganisms in the presence of excess carbon sources. In this study batch cultivation of Alcaligenes eutrophus with the aim of increasing PHB production ...
متن کاملPolyhydroxybutyrate production by a sugarcane growth promoter bacterium
Background The plastics derived from petrochemicals have many applications. However, public concern and environmental laws led to conservation policies and establish programs that stimulate the research and use of new products based on renewable resources. Polyhydroxyalkanoates (PHAs) are biopolymers synthesized by microorganisms under conditions of nutrient stress with similar properties to co...
متن کامل